Accuracy of gap analysis habitat models in predicting physical features for wildlife-habitat associations in the southwest U.S.

Kenneth G. Boykina,*, Bruce C. Thompsonb,1, Suzanne Propeck-Graya,2

a New Mexico Cooperative Fish and Wildlife Research Unit and Department of Fish, Wildlife, and Conservation Ecology, P.O. Box 30003, MSC 4901, New Mexico State University, Las Cruces, NM 88003, USA
b U.S. Geological Survey, New Mexico Cooperative Fish and Wildlife Research Unit, P.O. Box 30003, MSC 4901, Las Cruces, NM 88003, USA

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 8 March 2010
Received in revised form 9 August 2010
Accepted 23 August 2010
Available online 20 September 2010

\textbf{Key words:}
Gap analysis
Habitat modeling
Wildlife-habitat associations
Accuracy assessment

\textbf{A B S T R A C T}

Despite widespread and long-standing efforts to model wildlife-habitat associations using remotely sensed and other spatially explicit data, there are relatively few evaluations of the performance of variables included in predictive models relative to actual features on the landscape. As part of the National Gap Analysis Program, we specifically examined physical site features at randomly selected sample locations in the Southwestern U.S. to assess degree of concordance with predicted features used in modeling vertebrate habitat distribution. Our analysis considered hypotheses about relative accuracy with respect to 30 vertebrate species selected to represent the spectrum of habitat generalist to specialist and categorization of site by relative degree of conservation emphasis accorded to the site. Overall comparison of 19 variables observed at 382 sample sites indicated ≥60% concordance for 12 variables. Directly measured or observed variables (slope, soil composition, rock outcrop) generally displayed high concordance, while variables that required judgments regarding descriptive categories (aspect, ecological system, landform) were less concordant. There were no differences detected in concordance among taxa groups, degree of specialization or generalization of selected taxa, or land conservation categorization of sample sites with respect to all sites. We found no support for the hypothesis that accuracy of habitat models is inversely related to degree of taxon specialization when model features for a habitat specialist could be more difficult to represent spatially. Likewise, we did not find support for the hypothesis that physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because of relative differences regarding available information. Accuracy generally was similar (>60%) to that observed for land cover mapping at the ecological system level. These patterns demonstrate resilience of gap analysis deductive model processes to the type of remotely sensed or interpreted data used in habitat feature predictions.

\textcopyright 2010 Elsevier B.V. All rights reserved.

1. Introduction

Wildlife-habitat modeling has evolved greatly since 1980. Modeling trends have shifted from species- and site-specific predictions to multi-species models applicable to large regions. These trends represent 3 main time frames: early to mid 1980s, late 1980s to mid-1990s, and late 1990s to the present.

The 1980s were years of prolific model development. Most wildlife-habitat models of the period were species-specific, such as the model developed by Mosher \textit{et al.} (1986) to predict nesting habitat for broad-winged hawks (\textit{Buteo platypterus}) and red-shouldered hawks (\textit{Buteo lineatus}), or the model to predict breeding densities of ruffed grouse (\textit{Bonasa umbellus}) by Hammill and Moran (1986). Researchers often overlooked effects of spatial scale and applied models developed from local data over broad areas (Wiens, 1981) or applied multivariate approaches in sometimes questionable ways (Capen, 1981). Models were rarely tested for accuracy (Berry, 1986), as was the case with Habitat Suitability Index models (Cole and Smith, 1983). When new models were introduced, the general tendency among scientists was to spend more time applying them in research and less time evaluating circumstances where models were most useful (Stauffer, 2002). Only after much time had passed were limitations sufficiently comprehended to allow models to be applied more fittingly, if less often (Stauffer, 2002).

The latter part of the 1980s through the mid-1990s encompassed the transition of research focus from single-species models to multi-species models (either simultaneous models or multiple species model overlays). Single-species models were still frequently used, but limitations to their applicability were recognized.
With advances in knowledge about remote sensing and geographic information systems (GIS), multi-species models became common and were applied over large land areas (Morrison et al., 1998). One such modeling approach developed during this period was gap analysis (Scott et al., 1993), which has been used to perform statewide or broader analyses (Gap Analysis Handbook via Internet at <http://www.gap.uidaho.edu/handbook>). The amount of verifications and accuracy assessments performed on wildlife-habitat models also increased during this timeframe (Fielding and Haworth, 1995; Edwards et al., 1996; Fielding and Bell, 1997).

From the late 1990s to the present, deductive and inductive GIS-based wildlife-habitat models have become mainstream (Scott et al., 2002; Guisan and Thuiller, 2005). Deductive models use literature and expert opinion to identify suitable habitat features based on environmental variable associations. Gap analysis models are common among these models. The tenet that vegetation/land cover and related physical feature maps generally predict distribution of suitable vertebrate habitat is the basis of gap analysis habitat predictions (Edwards et al., 1996). Inductive modeling uses algorithms (e.g. GARP, Maximum Entropy), species occurrence points, and environmental variables to determine the probability of suitable habitat (Peterson et al., 2002; Phillips et al., 2006). Accuracy assessments have not been performed routinely on habitat models, including gap analysis models, to assess their usefulness to depict presence of actual habitat characteristics, but are essential to demonstrate reliability (Williams, 1996).

Model accuracy can be poor if the features a specialist species is associated with have a lower resolution than the land cover map, are included as part of a different vegetation class, or are difficult to identify via remote sensing (Edwards et al., 1996). Information gathered to create a predictive habitat model imparts a strong influence on the map derived from the model (Garrison and Lupo, 2002; Austin, 2007). Edwards et al. (1996), in assessing models relative to species occurrence data, found the accuracy of their habitat models to be proportional to amount of park area, possibly because large parks tend to have more complete species inventories that would reduce commission errors. Garrison and Lupo (2002) found that model-based map accuracy was lower regarding species that are not territorial, are fewer in number, have small ranges, and utilize aquatic habitats. Small colonial specialist species that need restricted microhabitats may be expected to have poorer model performance because microhabitat features are less frequently mapped over large areas. However, most assessments have been based on measures of species occurrence, which is highly variable in detection among taxa (Kery, 2002). Further, there is value in validation of model application by a user versus verification of general performance of a model approach (Rykiel, 1996).

Models that help delineate possible effects of and alternatives to management actions and that apply to large areas are necessary to overcome challenges faced by resource managers (Stauffer, 2002). Knowledge of the predictive accuracy of habitat distribution models is necessary for effective conservation planning (Edwards et al., 1996; Boone and Krohn, 1999). Virtually all wildlife-habitat models in the past have been tested by evaluating species occurrence in the predicted areas, whether by comparing model predictions to documented lists of species in the area or by trapping or observing species in the field. This method of accuracy assessment has limitations and could be misleading because species lists may be outdated, suitable habitats are not occupied at all times and/or may not be used by a species during field sampling (Greco et al., 2002; Kery, 2002), or a species is not detected despite being present (Mackenzie et al., 2002; Stauffer et al., 2002). Most habitat models do not predict the actual occurrence of a species in an area; instead they use a suite of modeled physical characteristics of habitat (e.g. land cover) to forecast the likelihood of suitable habitat presence. Habitat models that predict where a combination of habitat features are likely to be suitable for a certain species should be evaluated on the basis of what they are actually forecasting: where the suitable habitat features combinations are not the presence of the species. We assessed accuracy of Southwest Regional Gap Analysis Project (SWReGAP) habitat models in predicting the location of appropriate habitat features (Boykin et al., 2007). We further examined the degree to which concordance between predicted and field data indicated whether predictive capability was different among specialist versus generalist species and among land areas considered to have lesser or greater likelihood of management to conserve biodiversity. Specifically, we hypothesized that accuracy of SWReGAP habitat models is inversely related to degree of taxa specialization because physical features in a model of a habitat specialist are suspected to be more difficult to represent spatially. We also hypothesized that modeled physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because more physical and ecological information has been collected and is available spatially regarding lands devoted to conservation.

2. Study area

The study area constituted all area encompassed by the ecological regions defined by SWReGAP as occurring in New Mexico and extending into surrounding parts of Arizona, Colorado, and Utah (Fig. 1). The study area was defined by ecological features and related land cover mapping prepared for our specific project, not by any specific political boundary. Within the study area, specific sample sites were distributed randomly and proportionally among the 10 ecoregions.

3. Methods

3.1. Comparative predictive data

The datasets incorporated in the SWReGAP wildlife-habitat models are described in detail by Prior-Magee et al. (2007). The SWReGAP project created a 125-class land cover dataset for the states of Arizona, Colorado, Nevada, New Mexico, and Utah. This dataset included 109 ecological systems and 16 other land cover/land use classes (e.g. agriculture). Land relief variables were extracted from the National Elevation Dataset (http://ned.usgs.gov/) and included elevation, slope, aspect, and a 10-class landform coverage (Prior-Magee et al., 2007). Presence of soil texture classes (clay, loam, sand, etc.), rockiness, and rock outcrop percent were extracted from the State Soil Geographic database (STATSGO) available from the USDA Natural Resources Conservation Service (http://www.nrcs.usda.gov/products/datasets/statsgo/). Data collected from each sample site corresponded to variables used in the SWReGAP wildlife-habitat models and were separated into categories for analysis (Table 1).

3.2. Taxa specialization and land status

We examined degree of taxa specialization relative to model performance for species previously identified for conservation focus because of limited presumed occurrence on conserved lands. Using the original New Mexico Gap Analysis Project (Thompson et al., 1996), we identified species that had less than 10% of their distribution predicted to occur on Status 1 and 2 lands. GAP uses a categorical scale of 1 to 4 to identify the degree of maintenance of biodiversity (Prior-Magee et al., 1998, 2007). Examples of these categories include research natural areas (Status 1), wilderness areas (Status 2), multiple use lands (Status 3), and private lands with unknown management intent (Status 4) (Prior-Magee et al., 1998,
A status category of “1” identifies the highest, most permanent level of conservation, with a “4” representing the lowest level of biodiversity management, protection, or unknown status where information was not available to assign a different rating (Scott et al., 1993).

We selected 14 birds, 10 mammals, 4 amphibians, and 2 reptiles to use in sample site selection to provide for analysis of effects of specialization (Table 2). The number of species in each group approximated the percentage of that taxa group in the SWReGAP species list. Species were picked at random to represent a variety of habitat types, distribution, and specialization. Subsequent selection of sample sites represented distributions of these species (see below).

Land status categorization followed Prior-Magee et al. (1998), and specifically related to degree of active management to provide for biological diversity and land area protection. Every sample site was labeled as to its land status category in the SWReGAP data set for subsequent analyses.

3.3. Site selection and data collection

A double blind approach was used to select and examine field sampling sites to minimize bias. We randomly selected 382 points within 1 km of a road to facilitate sampling access and adequately represent ecological landscapes throughout New Mexico and bordering areas of Arizona, Utah, and Colorado. Field sites were selected such that there were at least 10 sites within the predicted modeled distribution of each taxa selected to represent habitat specialists and generalists.

All sites were examined by the same person (SPG) during July 2003–July 2005. The observer drove as close as possible and then walked to each sample site defined as 0.81 ha (equivalent of a 3 × 3 pixel area) and located the center point using a GPS unit accurate to within 15 m (<9% of sample unit size). The physical and vegetation/land form features at the sites were examined and recorded. Digital images were taken of each for later reference as needed to clarify descriptive assignments. Habitat features from the SWReGAP habitat models that were observed and recorded included slope, aspect, hydrology type (stream, wetland, etc.), distance to water, patch size, land cover, soil type, percent rock outcrop, and landform (valley, hill, cliff, etc.). Slope and aspect values for entire site were measured at the center of site using a clinometer and compass. Hydrology type, percent rock outcrop, and landform values were ocular estimates. Land cover was based on predominant vegetation and classified into ecological systems. Distance to hydrology and patch size were calculated from contemporary aerial photogra-
Table 1
Summary of physical features recorded at 382 sample sites in Southwest U.S. for comparison to features predicted from gap analysis modeling of wildlife-habitat.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Descriptions</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope (degrees)</td>
<td>6 categories from 0 to 90</td>
<td>0–15, 16–30, 31–45, 46–60, 61–75, 76–90</td>
</tr>
<tr>
<td>Aspect</td>
<td>16 categories with specific azimuth ranges</td>
<td>N (348.75–11.25), NNE (11.25–33.75), NE (33.75–56.25), ENE (56.25–78.25), E (78.75–101.25), ESE (101.25–123.75), SE (123.75–146.25), SSE (146.25–168.75), S (168.75–191.25), SW (191.25–213.75), SW (213.75–236.25), WSW (236.25–258.75), W (258.75–281.25), WNW (281.25–303.75), NW (303.75–326.25), NNW (326.25–348.75)</td>
</tr>
<tr>
<td>Distance to Water (m)</td>
<td>6 categories from 0 to beyond 1000</td>
<td>≤50, 50–<100, 100–<250, 250–<500, 500–1000, >1000</td>
</tr>
<tr>
<td>Land cover</td>
<td>Dominant vegetation species observed</td>
<td>Clay, Silt, Sand, Loam, Gravel, Cobble, Stone, Boulder, Rocky</td>
</tr>
<tr>
<td>Soil type</td>
<td>9 categories particle size and texture</td>
<td><15, 15–30, 31–65, >65</td>
</tr>
<tr>
<td>Rock outcrop (%)</td>
<td>4 categories of area covered by rock outcrop</td>
<td>Valley flats: floodplains, basin floors (alluvial, lacustrine) [0–2.9 slope]</td>
</tr>
<tr>
<td>Landform</td>
<td>10 categories of slope and basin site</td>
<td>Toe slopes, bottoms, and swales: riparian and semi-riparian, moist lower slopes and bottoms (fluvial/alluvial, colluvial, glacial) [3–9.9 slope]</td>
</tr>
</tbody>
</table>

3.4. Analysis

Field site data (actual habitat features) and SWReGAP predictions of suitable habitat features were compiled in independent spreadsheets and then subjected to a concordance assignment based on value or category assignments to all variables for all sites. The resulting concordance table was then converted to a frequency tabulation for all variables. The frequency table was used to perform a series of goodness of fit tests regarding taxa category and conservation categorization relative to concordance of predicted and observed data for all sites. These concordance analyses were performed to assess the relative degree of similarity of model-predicted features to features on the ground as well as to assess the 2 specific hypotheses about how taxa life history and knowledge about lands may affect predictive performance.

4. Results

Overall comparison of 19 variables observed at the 382 sample sites relative to SWReGAP predicted values indicated ≥60% concordance (59.7% rounded to 60%) for 12 of the 19 variables (63%) examined (Table 3: All sites column). Directly measured or observed variables (slope, soil composition, rock outcrop) generally displayed high concordance, while variables that required judgments relative to descriptive categories (aspect, ecological system, landform) were less concordant. Aspect was a directly measured variable that required a preliminary judgment about presence and direction of slope, which could vary across a sample unit.

Moreover, there were no differences detected in concordance regarding taxa groups, degree of specialization/generalization of selected taxa, or land conservation categorization of sample sites with respect to all sites (Table 3). There also was inde-
pendence among all taxa groups relative to each other (test values = 7.69–14.97, \(P = 0.664–0.848\), df = 18) and for Status 1 and 2 sites compared to Status 3 and 4 sites (test value = 8.71, \(P = 0.966\)).

Despite the relative strength of relationships between predictions and field site observations overall and for most variables, 8 of the variables displayed low concordance. These specific variables indicated types of factors that warrant specific evaluation for possible error propagation effects that were not detected in these analyses but could affect other applications.

We found no support for the hypothesis that accuracy of SWReGAP habitat models is inversely related to degree of taxa specialization that outcome refuted a presumption that features in a model for a habitat specialist are more difficult to represent spatially. Likewise, we did not find support for the hypothesis that physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because of relative differences regarding available information. These patterns demonstrated resilience of gap analysis predictive processes to the type of remotely sensed or interpreted data used in habitat feature predictions.

5. Discussion

Relatively low accuracy for aspect, ecological system, and landform variables in this analysis appeared to result from greater likelihood of limitations in correctly assigning those values on site versus actual inaccuracy in gap analysis predictions. This is suggested because independently evaluated accuracy of SWReGAP land cover predictions has shown >60% accuracy for most land cover assignments within the overall ecological system classification (Lowry et al., 2007; Prior-Magee et al., 2007). Variation on the ground and gradations of landcover likely contribute to the discordance with remotely sensed data models. Austin (2007) discussed and emphasized how variables used can affect relative performance of modeling methods.

Field data indicated that the observer experienced some difficulty distinguishing near-zero slope and no slope from areas with greater slope, thus making directional aspect assignments to no slope sites predicted from DEM data used in gap analysis. Based on review of all slope and aspect assignments, the tendency in the field was to indicate there was no discernible aspect at relatively flat sites and to indicate slope was >15% when it was actually less. These situations contributed about 38% discordance for the aspect variable. Computer derived aspect for each pixel is calculated based on the direction of the 8 adjacent neighborhood pixels. Observers likely mentally average these variables using the overall area and may over-emphasize small portions that may not dominate the area but focus observer attention.

With respect to land form, most variation was attributed to mixed attributions among valley flats, bottoms and swales, and nearly level plateaus and terraces. Inspection of data indicated that the majority of discordant sites predicted were mixed among those 3 categories in field assignments relative to how these categories were distributed in model predictions. The intermixing of assignments of valley flats versus nearly level plateaus and terraces contributed 53% of the discordance. Similar to aspect, field determination of these land form types likely focuses on either a more broad vegetation structure variables related to species occurrence were more general than the specificity of landscape context variables, a pattern consistent with our analyses.

Distance to water displayed relatively high concordance despite substantial variation across the landscape regarding substance and specificity in mapping wetland and riparian areas. Spatial hydrology data are known for having errors associated with seasonality of surface water and extent of that surface water. This is understandable in arid and semi-arid areas where surface water discharge is directly tied to recent precipitation. The high concordance corre-

Table 3

<table>
<thead>
<tr>
<th>Factor</th>
<th>All sites</th>
<th>Specialist only sites</th>
<th>Generalist only sites</th>
<th>Specialist sites total</th>
<th>Generalist sites total</th>
<th>Amphibians</th>
<th>Birds</th>
<th>Mammals</th>
<th>Reptiles</th>
<th>Steward 182</th>
<th>Steward 3&4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>382</td>
<td>36</td>
<td>18</td>
<td>355</td>
<td>337</td>
<td>130</td>
<td>265</td>
<td>336</td>
<td>77</td>
<td>16</td>
<td>366</td>
</tr>
<tr>
<td>Slope</td>
<td>92.1</td>
<td>94.4</td>
<td>100.0</td>
<td>91.8</td>
<td>92.0</td>
<td>96.9</td>
<td>90.2</td>
<td>92.3</td>
<td>92.2</td>
<td>100.0</td>
<td>91.8</td>
</tr>
<tr>
<td>Aspect</td>
<td>27.0</td>
<td>19.4</td>
<td>38.9</td>
<td>26.8</td>
<td>28.2</td>
<td>28.5</td>
<td>26.8</td>
<td>28.6</td>
<td>35.1</td>
<td>31.3</td>
<td>26.8</td>
</tr>
<tr>
<td>Distance–Water</td>
<td>64.4</td>
<td>83.3</td>
<td>44.4</td>
<td>65.1</td>
<td>62.0</td>
<td>65.4</td>
<td>57.4</td>
<td>64.9</td>
<td>71.4</td>
<td>56.3</td>
<td>64.8</td>
</tr>
<tr>
<td>Ecol. System</td>
<td>39.8</td>
<td>52.8</td>
<td>55.6</td>
<td>39.7</td>
<td>39.2</td>
<td>31.5</td>
<td>41.5</td>
<td>38.1</td>
<td>37.7</td>
<td>25.0</td>
<td>40.4</td>
</tr>
<tr>
<td>Land cover-Gen</td>
<td>63.9</td>
<td>83.3</td>
<td>77.8</td>
<td>64.2</td>
<td>62.9</td>
<td>60.8</td>
<td>63.8</td>
<td>64.0</td>
<td>58.4</td>
<td>43.8</td>
<td>64.8</td>
</tr>
<tr>
<td>Clay</td>
<td>45.8</td>
<td>33.3</td>
<td>50.0</td>
<td>44.8</td>
<td>46.3</td>
<td>36.2</td>
<td>47.5</td>
<td>43.5</td>
<td>39.9</td>
<td>37.5</td>
<td>46.2</td>
</tr>
<tr>
<td>Silt</td>
<td>64.4</td>
<td>72.2</td>
<td>50.0</td>
<td>64.8</td>
<td>63.2</td>
<td>68.5</td>
<td>64.2</td>
<td>63.1</td>
<td>58.4</td>
<td>56.3</td>
<td>64.8</td>
</tr>
<tr>
<td>Sand</td>
<td>49.7</td>
<td>41.7</td>
<td>38.9</td>
<td>49.6</td>
<td>49.9</td>
<td>55.4</td>
<td>50.6</td>
<td>50.0</td>
<td>53.2</td>
<td>56.3</td>
<td>49.5</td>
</tr>
<tr>
<td>Loam</td>
<td>26.4</td>
<td>25.0</td>
<td>5.6</td>
<td>28.2</td>
<td>27.3</td>
<td>27.7</td>
<td>29.8</td>
<td>27.7</td>
<td>24.7</td>
<td>18.8</td>
<td>26.8</td>
</tr>
<tr>
<td>Gravel</td>
<td>75.9</td>
<td>75.0</td>
<td>77.8</td>
<td>75.8</td>
<td>76.0</td>
<td>80.8</td>
<td>73.2</td>
<td>76.5</td>
<td>77.9</td>
<td>81.3</td>
<td>75.7</td>
</tr>
<tr>
<td>Cobble</td>
<td>64.9</td>
<td>61.1</td>
<td>66.7</td>
<td>64.5</td>
<td>65.0</td>
<td>70.0</td>
<td>63.0</td>
<td>66.4</td>
<td>71.4</td>
<td>68.8</td>
<td>64.8</td>
</tr>
<tr>
<td>Stone</td>
<td>81.4</td>
<td>88.9</td>
<td>88.9</td>
<td>81.4</td>
<td>81.0</td>
<td>84.6</td>
<td>81.1</td>
<td>81.8</td>
<td>87.0</td>
<td>68.8</td>
<td>82.0</td>
</tr>
<tr>
<td>Boulder</td>
<td>96.3</td>
<td>97.2</td>
<td>100.0</td>
<td>96.1</td>
<td>96.1</td>
<td>95.4</td>
<td>95.8</td>
<td>96.7</td>
<td>98.7</td>
<td>97.5</td>
<td>96.7</td>
</tr>
<tr>
<td>Rocky</td>
<td>32.7</td>
<td>27.8</td>
<td>16.7</td>
<td>34.1</td>
<td>33.8</td>
<td>33.8</td>
<td>37.0</td>
<td>34.5</td>
<td>33.8</td>
<td>25.0</td>
<td>33.1</td>
</tr>
<tr>
<td>Outcrop <15</td>
<td>59.7</td>
<td>58.3</td>
<td>55.6</td>
<td>60.0</td>
<td>59.9</td>
<td>56.2</td>
<td>60.8</td>
<td>60.7</td>
<td>51.9</td>
<td>87.5</td>
<td>58.5</td>
</tr>
<tr>
<td>Outcrop 15–30</td>
<td>75.9</td>
<td>77.8</td>
<td>83.3</td>
<td>76.1</td>
<td>76.3</td>
<td>80.0</td>
<td>76.2</td>
<td>76.5</td>
<td>79.2</td>
<td>81.3</td>
<td>75.0</td>
</tr>
<tr>
<td>Outcrop 30–65</td>
<td>89.8</td>
<td>86.1</td>
<td>94.4</td>
<td>89.9</td>
<td>90.5</td>
<td>90.8</td>
<td>89.4</td>
<td>89.6</td>
<td>92.2</td>
<td>100.0</td>
<td>89.3</td>
</tr>
<tr>
<td>Outcrop >65</td>
<td>98.4</td>
<td>97.2</td>
<td>100.0</td>
<td>98.6</td>
<td>98.8</td>
<td>97.7</td>
<td>98.5</td>
<td>98.8</td>
<td>100.0</td>
<td>100.0</td>
<td>98.4</td>
</tr>
<tr>
<td>Land Form</td>
<td>16.8</td>
<td>13.9</td>
<td>27.8</td>
<td>16.1</td>
<td>16.9</td>
<td>14.6</td>
<td>15.5</td>
<td>17.0</td>
<td>13.0</td>
<td>0.0</td>
<td>17.5</td>
</tr>
<tr>
<td>Goodness of fit relative to all sites</td>
<td>P (df = 18)</td>
<td>0.237</td>
<td>0.664</td>
<td>0.935</td>
<td>0.847</td>
<td>0.958</td>
<td>0.997</td>
<td>1.00</td>
<td>0.926</td>
<td>0.973</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Values in table are percentages except for values of N.
sponds more closely to riparian vegetation that, though influenced by recent precipitation, is less affected by varying precipitation changes.

Our results highlight the differences between field inspection and computer generated habitat modeling. In the field, animals (and biologists) observe fine grained natural gradients on the landscape. Habitat models use data (categorical and continuous) that limit these gradients in both space and time. Despite the limitations of input variables and assumptions of species association based on limited knowledge, habitat models still provide a useful tool for conservation managers (Edwards et al., 1996).

Our evaluation used data collected independently from data used to prepare the models and further examined model performance among species life histories. Pearce and Ferrier (2000) stressed the importance of using independent data to evaluate predictive performance, and Hernandez et al. (2006) emphasized the importance of applying multiple evaluation measures to assess model accuracy. Further, we did not detect appreciable difference in model performance among taxa groups or specialists versus generalists, a pattern similar to that reported by Hopkins and Burt (2009). However, greater accuracy has been reported for species with smaller geographic ranges and limited environmental tolerance (Hernandez et al., 2006). Our sampling targeted toward species history was consistent with suggestions of Meynard and Quinn (2007) who suggested that models for species with low prevalence can be improved through targeted sampling. Importantly, we examined specific features that are predicted by predictive models, and provided analytical outcomes stated directly about those features rather than indirectly as suggestions about species occurrence.

6. Habitat modeling implications

The relative uniformity of concordance patterns across comparison categories suggested that SWReGAP predictions are generally robust for vertebrate life history aspects and landscape categorization on biological or social factors that have been a part of gap analysis to date. Moreover, these analyses suggest that most variables used in SWReGAP habitat modeling perform well in describing actual landscape features. This corroboration indicates that modeling approaches in place as part of the overall Gap Analysis Program have prospect for accurately modeling habitat features as long as the association between physical features and species habitat are adequately interpreted. Current efforts to refine these models by using demography, interspecific competition, and microhabitat features should provide more accurate and useful models for conservation managers.

Acknowledgements

We thank all of the personnel involved with the SWReGAP effort. We thank K. Gergely for a critical review of this manuscript. We thank the USGS for providing funding. Additional financial assistance was provided by the United States Geological Survey New Mexico Cooperative Fish and Wildlife Research Unit and the Agricultural Experiment Station, New Mexico State University.

References

